Denne siden fra BGA wiki vises på engelsk fordi det ikke er noe innhold på språket ditt ennå. create it!
For the rules of piraten kapern, see GameHelpPiratenKapern
Probabilities
Binomial formula
n! × pᵏ(1 − p)ⁿ⁻ᵏ k!(n-k)!
n: number of trails (dice thrown) k: number of successes (dice with a face value)p: probability of success (of a die face value)
Example
Probability of throwing 3 with 5 dice:
5! × (⅙)³ × (1 − ⅙)⁵⁻³ 3!(5-3)!
= 5×4×3×2×1 × (⅙)³ × (⅚)² 3×2×1 × 2×1
= 10 × (⅙)³ × (⅚)²≈ 0.0321 or 3.21%
2 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)² | ≈ 69.4% |
| Probability of one skull | P(X = 1) = 2 × (⅙) × (⅚) | ≈ 27.8% |
| Probability of two skulls | P(X = 2) = (⅙)² | ≈ 2.78% |
8 dice
| In words | In maths | Percentage |
|---|---|---|
| Probability of no skulls | P(X = 0) = (⅚)⁸ | ≈ 23.3% |
| Probability of one skull | P(X = 1) = 8 × (⅙) × (⅚)⁷ | ≈ 37.2% |
| Probability of two skulls | P(X = 2) = 28 × (⅙)² × (⅚)⁶ | ≈ 26.0% |
| Probability of three skulls | P(X = 3) = 56 × (⅙)³ × (⅚)⁵ | ≈ 10.4% |
| Probability of four skulls | P(X = 4) = 70 × (⅙)⁴ × (⅚)⁴ | ≈ 2.60% |
| In words | In maths | Percentage |
|---|---|---|
| Probability of one or more skulls | P(X ≥ 1)
= 1 − P(X = 0) = 1 − (⅚)⁸ |
≈ 76.7% |
| Probability of two or more skulls | P(X ≥ 2)
= 1 − [ P(X = 0) + P(X = 1) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ ] |
≈ 39.5% |
| Probability of three or more skulls | P(X ≥ 3)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ ] |
≈ 13.5% |
| Probability of four or more skulls | P(X ≥ 4)
= 1 − [ P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) ] = 1 − [ (⅚)⁸ + 8 × (⅙) × (⅚)⁷ + 28 × (⅙)² × (⅚)⁶ + 56 × (⅙)³ × (⅚)⁵ ] |
≈ 3.07% |
Denne siden kommer fra BGA-wikien og er skrevet av BGA-spillere. Du må gjerne redigere den hvis du vil!

